手机浏览器扫描二维码访问
很多人都玩过电子游戏。
比如说电子游戏“推箱子”,游戏画面就是二维;而现在3D产品问世,现在好多人玩的游戏都是所谓的三维。
而所谓的空间结构,作者通俗来说。
一维是点,二维是平面,三维是空间。
从解析几何上来说,一维是粉笔下的点,二维是直线x垂直于直线y所构成平面,三维是垂直于二维平面所形成的空间。
四维之上至更高的纬度,对于作者所处的时间线来说,是很难理解的。
。
。
。
如果说在空间中引入磁场,或者在磁场中引入空间。(本章节纯属娱乐)
如果一个点,在处于正常状态,就只是一个点。如果加上其他因素,就可能不是一个点。比如点的内部存在将点分化瓦解成两个半点的东西。这可能是条线x了(警惕:把点看成线,把线看成点)。如果两半点所处的线在某时间与线x两两相互垂直,就构成了三维空间。
简单的磁场体系(理想条件)是一个体系中存在贯穿该体系的一条直线的同时存在两个点(假定为加点和减点)。
假定1
由加(减)点到减(加)点的线段任意画圆弧(圆弧直径不超过线段长度),就会形成一个扇面a,在该扇面所在平面内,只有唯一的一个扇面与扇面a共用一个线段。那么这两个扇面组成的图形就是对称图形。
如果扇面a形状恒定,线段位置恒定,但扇面a所处平面不恒定,就会构成一个类似于椭球体的空间。
这个模型就很像西瓜。我们都知道西瓜籽是遍布西瓜内部的,在瓜皮内。
假定2
假定1(粘贴)由加(减)点到减(加)点的线段任意画圆弧(圆弧直径超过线段长度但小于二倍线段长),就会形成一个扇面a,在该扇面所在平面内,只有唯一的一个扇面与扇面a共用一个线段。那么这两个扇面组成的图形就是对称图形。
如果扇面a形状恒定,线段位置恒定,但扇面a所处平面不恒定,就会构成一个类似于环体的空间模型。
这个模型就很像苹果。我们都知道苹果籽是贴着苹果核的。
假定3
假定1(粘贴)由加(减)点到减(加)点的线段任意画圆弧(圆弧直径超过线段二倍线段长),就会形成一个扇面a,在该扇面所在平面内,只有唯一的一个扇面与扇面a共用一个线段。那么这两个扇面组成的图形就是对称图形。
如果扇面a形状恒定,线段位置恒定,但扇面a所处平面不恒定,就会构成一个环体的空间模型。
单类似于环体和环体究竟有什么区别。
我们不知道。
我们只知道苹果成熟后是会掉落的(内部外部共同作用)。((所以,动物都学会了采摘。))
命里有时终须有,命里无时要强求。 这是一个长生果的故事。...
他曾是圣殿国王,四大洲只手遮天,却因心爱女人的背叛,险些命丧黄泉。为复仇,他踏上回归路。在酒吧昏暗的角落,有佳人绝色,一个精彩纷呈的故事,就此展开...
日更十章他是龙族龙子,却蜕变天赋失败,自巅峰跌落。圣女未婚妻自斩身孕,杀他证道。家族视他为耻辱,将他逐出,从族谱除名。绝境中,他苏醒前世记忆,华夏神龙...
2017最火玄幻作品,海外点推双榜第一张悬穿越异界,成了一名光荣的教师,脑海中多出了一个神秘的图书馆。只要他看过的东西,无论人还是物,都能自动形成书籍...
我是万古人间一剑修,诸天之上第一仙。...
千夜自困苦中崛起,在背叛中坠落。自此一个人,一把枪,行在永夜与黎明之间,却走出一段传奇。若永夜注定是他的命运,那他也要成为主宰的王。...