手机浏览器扫描二维码访问
「谢谢各位老师能来参加这次研讨会,那个,关于我一些不成熟的想法,都已经列印出来,就是大家桌面上放的那叠类似稿纸的东西。
对了,还要特别感谢罗伯特教授今天的讲座对我的启发,以及我的导师田言真教授对我的指导。正如刚刚田导说的那样,我在近期阅读了舒尔茨教授跟罗伯特教授的论文之后,突然就有了这麽一个很大胆的想法。」
乔喻话音刚落,几乎所有人都拿起了桌面上的那份报告,太简陋了,刚刚大家也就提前几分钟来到会议室,忙着寒暄去了,还真没谁拿起来认真看上一眼。倒是坐在田言真身边的张树文跟罗伯特教授已经拿起了那本简陋的册子开始翻看。
乔喻开场白讲完了之后,已经切入正题。
「我的想法就是藉助彼得·舒尔茨教授搭建的完备空间理论,利用模形式理论丶p—进几何和量子化同调范畴,推导出代数曲线上有理点的上界表达式。
要做到这一点,首先就需要考虑曲线X的几何背景,尤其是其亏格g(X)。亏格是一个重要的拓扑不变量,表示曲线的几何复杂性。对于亏格g>1的曲线,Faltings定理告诉我们有理点数量是有限的。
但这还不够,因为我们都希望得到一个具体的上界,根据几句分析亏格越高,代数曲线的复杂性增加,这意味着有理点的数望相对减少。所以我的初步猜想是:N(X)sC(,然后我会从几个设想来论证这个结果,虽然这个结果我认为是没错的,但常数C的具体公式,我暂时还无法证明出来,但我想到了几个很有意思的方法来推导常数C的结果。只是这些方法还没能证明,所以希望各位老师们能给我些启发。首先,我们引入模空间,设X是亏格为g的代数曲线,其模空间Mg参数化了所有亏格为g的曲线。
因为模形式与模空间密切相关,所以我理解为定义在模空间上的某些函数,它们对曲线的复杂度提供几何约束。这样设模形式的等级为k,我们再假定存在一个常数A1,使得:N(X)sC1(g,k)=A1-g-k^α。。。」
台下,会议室内所有的教授们都已经收起了之前轻松的心态,神色开始变得凝重起来。要说唯一表情没什麽变化的,大概就只有田言真跟薛松两人了。
这一点坐在最后面的陈卓阳能作证。
他对乔喻讲的内容没什麽兴趣,所以将更多的注意力放到了对面导师跟那两位大牛的表情上。
很明显,田导的心态很放松,只是安静的看着乔喻在板书上书写,他身边的两位大佬,一位眉头拧成了川字,另一个已经拿起笔开始在文稿旁边写写画。。。陈卓阳感觉心态有点崩了。。
不是吧,大家都是认真的啊?所以并不是田导想硬推小师弟,这种都没被证明的玩意儿大家也能认可?
是的,陈卓阳得知今天下午这场研讨会的时候,他是真觉得田导就是想让小师弟跟大家混个脸熟。毕竟田导也说了,乔喻这些都还只是想。。。
哪有针对想法就这麽玩的?陈卓阳甚至觉得田导太着急了,毕竟这个小师弟才特麽十五岁!虽然能参加CMO还拿第一,证明高中知识肯定是熟练掌握了,但大学知识都不知道接触过没,他懂个屁的科研啊!
他甚至觉得乔喻能看懂彼得·菲尔茨的论文都是在说梦话。但现在光看教授们的表情完全不是这麽回事,因为能看出大家是真的都开始思考了。。。这特麽的,小师弟是真要逆天了?
更让他绝望的是,台上的乔喻不但没有半点怯场,还越讲越兴奋,因为许多教授已经开始认真看他的板书,等等,那位罗伯特教授甚至拿出了手机拍下他板书的内。。。到这一步我们可以引入p—进数域与舒尔茨教授的同调理论,我们知道对于每个质数P,etale同调群的性质可以约束曲线上有理点的局部分布
那麽根据舒尔茨的p—进Hodge理论,就可以推导出以下不等式:N(X)sC2(g,p)=A2·g2—log(p)。这里有个点很重要,舒尔茨的p—进Hodge理论的一个核心特性是其具备完备性。
所以如果我们推导的不等式成立,就可以从曲线在局部域的性质出发,推导出全局上的几何约束,所以我们需要证明这个不等式是否成立,为此我在田导的指导下,想到了一个办法,就是引入一个量子化同调范畴。。。」
这半个小时,陈卓阳只感觉如坐针毡。
因为整个会议室里只有田导两个学生在现场,一个在前面侃侃而谈,另一个已经听不懂师弟到底在讲什麽。。。偏偏会议室还安静的可怕,甚至没有任何议论声,所有人都全神贯注的盯着乔喻的板书。
包括那三位会议室里绝大多数教授都还只能仰望的数学界大佬。终于,乔喻讲完了。。。
「以上就是我的完整思路,问题在于我还无法处理设定中的那些常数,以及对具体工具进行完整的符合逻辑的证明,但我觉得这应该是一个新的研究方向,因为一旦我们推出了常数C的结果,就代表着能够直接预测相关曲线的有理点个数上界。」
当乔喻的声音终于消散在空气中,陈卓阳终于松了口气,感觉好受了些。但安静下来的会议室又让他紧张起来。
不是,教授们,你们不打算说点什麽?
一个都是成年人别看着小师弟露出那副不可思议的表情好不好?他才十五岁啊,现在应该接受挫折教育才对!大家此时应该狠狠的批判他的想法啊!陈卓阳在心里恶狠狠的想着,可当他看到对面的田导率先抬起手开始鼓掌时,他也只能第一时间配合着抬起手鼓起掌来。。
「啪啪啪。。」
零落的掌声似乎让众位教授们反应过来,会议室内立刻被掌声填满。
好在人不多,也就是几十秒,掌声便停歇,然后陈卓阳终于听到天籁般的声音。
「我有个问题,乔喻,你的第三部分,为什麽不直接使用Riemann—Roch定理?」陈卓阳看了眼对面一脸严肃的张树文,果然大教授就是威武!「啊?什麽是Riemann—Roch定理?」乔喻充满求知欲的反问了句。
大家反应各异。
比如站在那里的乔喻显得若无其事,但他名义上的小导薛教授感觉很社死,脸「唰」一下就红了。
至于其他教授,包括罗伯特·格林在内,则都很茫然,大概不能理解刚刚一个洋洋洒洒讲了半小时代数曲线的小家伙竟然不知道这个代数几何跟复几何中的重要定理。
田言真则是面不改色,语气温和的开口解释道:「张教授,就如我之前说的那样,乔喻才十五岁,是我在CMO中发现的苗子,还没接受完整的本科教育,所以数学方面知识储备比较零散,你可以现场指点下他。」
婚后 情人节,韩经年问今天怎么过? 夏晚安搂着被子,昏昏欲睡的答睡觉。 圣诞节,韩经年问今天怎么过? 夏晚安抱着枕头,漫不经...
2017最火玄幻作品,海外点推双榜第一张悬穿越异界,成了一名光荣的教师,脑海中多出了一个神秘的图书馆。只要他看过的东西,无论人还是物,都能自动形成书籍...
一念成沧海,一念化桑田。一念斩千魔,一念诛万仙。 唯我念永恒 这是耳根继仙逆求魔我欲封天后,创作的第四部长篇小说一念永恒...
千万年前,李七夜栽下一株翠竹。八百万年前,李七夜养了一条鲤鱼。五百万年前,李七夜收养一个小女孩。今天,李七夜一觉醒来,翠竹修练成神灵,鲤鱼化作金龙,小女孩成为九界女帝。这是一个养成的故事,一个不死的人族小子养成了妖神养成了仙兽养成了女帝的故事。...
穿越成了光明神,从此开启招收信徒,发展神国,称王称霸,为所欲为的羞耻日子...
阴阳分天地,五行定乾坤。 天穹之下岁月沧桑的中土神州,正是仙道昌盛的时代,亿万生灵欣欣向荣。 纵横千万里间,总有人间一幕幕悲欢离合,在恢弘长生的仙道中...